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Abstract

Imprecision and uncertainty in systems can often be expressed with
interval models. The result of the simulation of these models in the form
of envelope trajectories. These envelopes can be characterised by several
properties such as completeness, soundness which lead to the concept of
overbounded and underbounded envelopes. Simulation of such interval
models can be performed by several means including quantitative, quali-
tative and semiqualitative techniques. Whereas existing simulators do not
provide any information about the ”error” with respect to the exact one,
a method to obtain error-known envelopes is proposed. It is based on the
simultaneous computation of an underbounded and an overbounded enve-
lope. Both envelopes are computed by means of Modal Interval Analysis.
A way of controling the error of the envelopes and adjust it to the desired
value is presented.

Keywords: semiqualitative simulation, interval analysis, model-based fault
detection.

1 INTRODUCTION

Most of the existing simulators need a mathematical model in which the values of
the parameters are real numbers. This implies that the user must have a totally
deterministic knowledge of the system. However, complex systems are often
subjected to uncertainties that make such a model difficult if not impossible to
obtain. A precise model cannot represent the behaviour of such systems which
require an explicit representation of imprecisions and uncertainties. A special



case is when the uncertainties are structured: only the parameters undergo
imprecisions but the model structure is known. This case can be handled with
interval models in which the equation parameter values are allowed to vary
within numeric intervals. For instance, such an interval model could be given
by the following transfer function with interval parameters which represents a
linear differential relation between an input u(t) and an output y(t):

Y (s) [2,3] s+ [1,3]

PO =56 " Ta2+Ba:+ 24

in which s is the Laplace variable and U(s) and Y'(s) are the input and output
Laplace transforms, respectively. Actually, a precise model can be viewed as
an interval model in which the interval widths are zero. As interval widths
decrease, precision increases [13].

The results of the simulation of such interval models is in the form of en-
velope trajectories (or envelopes for short)[6] [26]. Hence this is of particular
interest to the Fault Detection (FD) community as it provides a way to compute
automatically and in a model-based sound manner adaptive alarm thresholds for
every variable. The envelopes can be characterised by several properties, the
main ones being completeness and soundness which lead to the concepts of
overbounded and underbounded envelopes which have radical consequences on
the robustness and sensitivity of the FD system. Indeed, in the most common
case, the device is reported as faulty if the observed outputs go out of their
respective envelopes [24]. Therefore, if the envelope is overbounded, this can
result in not detecting some faults, whereas, on the other hand, if the envelope
is underbounded it may result in false alarms.

The simulation of interval models can be performed by several means includ-
ing quantitative, qualitative and semiqualitative techniques. Existing simulators
do not provide any information about the ”error” with respect to the exact one.
A method to obtain error-bounded envelopes is proposed. It is based on the
simultaneous computation of an underbounded and an overbounded envelope.
Both envelopes are computed by means of Modal Interval Analysis. A way of
controling the error of the envelopes and adjust it to the desired value is also
provided.

The next section defines the envelopes and their properties in relation to
the fault detection problem. Section 3 discusses the related work and provides
a summary of the existing simulators that can be used to generate envelopes,
putting special emphasis on simulators based on interval arithmetic. In section
4 a method to generate error-bounded envelopes is presented. This method is
based on Modal Interval Analysis, which is presented in section 5, and applied
to the envelope generation problem in section 6. Finally, some conclusions and
directions for the future work are discussed.

2 ENVELOPES AND THEIR PROPERTIES IN
RELATION TO MODEL-BASED FAULT DE-
TECTION

When the behaviour of an interval model, which actually represents a whole set
of models, is simulated the result cannot obviously be the same as the one given



by traditional simulation of a precise system, that is a unique graph trajectory
across time for each variable. The behaviour of such systems can be represented
in different ways, depending on whether the quantity space of the variables has
been abstracted to a set of finite qualitative values or not.

In the first case, it can be represented by a qualitative state sequence. All
the possible behaviours of the imprecise system may be represented globally
using a graph as the one in figure 1 [7] or a finite automata in the case of a total
envisionment.
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Figure 1: Qualitative simulation

In the second case, the state space is a compact set which can be represented
by an envelope trajectory for every variable. All the possible behaviours starting
from a specific initial state are compacted within a unique curve. This envelope
hence includes a whole family of temporal curves like the one displayed in fig-
ure 2. The different temporal curves are indiscernible, so that the qualitative
features may not be captured, particularly if the envelope bounding curves do
not correspond to a unique temporal trajectory.
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Figure 2: The bounds of the envelopes are two curves

The size of the envelope is critical. If it is too tight there are systems
belonging to the model set whose output is outside the envelope, hence the
envelope does not include their behaviour. Such an envelope is not complete,
taking the definition that a complete envelope is one that includes all possible



behaviours [23]. On the other hand, if the envelope is too wide it includes zones
that cannot be reached by any of the systems belonging to the set. Such an
envelope is not sound. Our definition of a sound envelope is that every point
inside the envelope belongs to the output of at least one of the systems belonging
to the set. A complete but not sound envelope is an overbounded envelope. A
sound but not complete envelope is an underbounded envelope.

The ultimate goal is to generate a complete and sound envelope, that is the
exact envelope. However, more realistic goals are to produce either a minimally
overbounded envelope or a minimally underbounded envelope, depending on the
use that one wants to make of the envelope. For instance, if the envelope is to be
used as reference behaviour for fault detection, the system is reported as faulty
if the system output goes out of the envelope. Therefore if the envelope is over-
bounded, this can result in not detecting some faults. On the other hand, if the
envelope is underbounded it may result in false alarms. It is commonly accepted
by the FDI community that the overbounded envelopes case is preferable.

Another desirable property of an envelope is stability. If the envelope width
grows with time, as the input signal remains the same, it is unstable. This means
that the imprecision accumulates along the propagation. This is obviously an
undesirable property, an unstable envelope becoming useless at some point.

3 RELATED WORK: ENVELOPE SIMULA-
TORS

There are many simulators that can be used to generate envelopes. They can
be classified into different groups depending on the information used for the
simulation: quantitative, qualitative or semiqualitative [1]. A detailled survey
of these simulators can be found in [2].

e Methods based on quantitative or numeric simulation:

— Superimposition of a threshold (constant or adaptive) arising from
statistical data to the behavior of a numeric nominal system [4] [11]
[13].

— Study of a selection of scalar systems [3] [13]. Examples are given by
Qua.Si. T and Qua.Si. II [3].

— Conversion to an optimisation problem. An example is given by
Qua.Si. IIT [5].

e Methods based on qualitative simulation:

When numerical knowledge is available, as in interval systems, there are still
notable deficiencies in the attempts that have been made to take advantage of
it in qualitative simulators. The resulting methods are called semiqualitative
methods. Some examples of systems implemented along this approach are:

— Q2 [15] which uses QSIM, to which an interval arithmetic module
has been added as well as numeric information about the landmarks;

Q3 [3].



— SQSIM [13] which intersects the results given by QSIM, Q2, Q3 and
NSIM.

e Methods based on interval arithmetic:

Interval arithmetic [20] is interesting as it allows one to consider the whole
continuous range of possible instances represented by an interval model. This
is due to the natural extension and one of its properties: monotonic inclusion.

Definition 1 The natural extension of a real function is the one obtained re-
placing real numbers by standard intervals and real number operations by interval
operations.

Theorem 2 (Monotonic inclusion) Given f (z;), a real function, and F (X;),
its natural extension, then x; € X; implies f (x;) C F (X;).

In consequence, the natural extension gives a guarantee on the result: no
function in the class can take values outside the range computed using inter-
val arithmetic. Unfortunately, it does not provide the exact result (complete
and sound) in the general case. This comes essentially from the two following
problems:

e The multi-incidence problem: interval arithmetic considers that each in-
cidence of a variable in a function is independent of the other. Similarly,
it is unable to take into account other dependencies. The compiled range
is hence overbounded.

o The wrapping problem: the state, at some time point, of a system with
interval parameters may be represented by an hypercube. However, it
may be that the system’s state does not evolve into another hypercube
at the next time point. In figure 3 an example with two state variables
is shown: the hypercube is a rectangle. It transforms into a rhombus at
the following time step (it could actually evolve into any two dimensional
shape). The projection of this rhombus on the variable axis leads to a new
rectangle which obviously includes spurious states, as shown in the figure.
Therefore, the obtained envelopes are overbounded.

AN,

Figure 3: The wrapping problem

Some semiqualitative simulators based on interval arithmetic are:

— The Moore’s interval simulator [20] which simply ignores multi-incidences.



— The Markov and Angelov simulator [18].

— AWA [16], that tries to minimise the wrapping effect by changing the
system’s co-ordinates along the trajectory of the system [13].

— NIS [26].
— NSIM [13].
— Ca~En (Causal Engine) [6].

All these simulators produce overbounded envelopes. Some methods use
fuzzy sets: All of them take the a-cut of the fuzzy sets and end up using interval
arithmetic. Some of them are:

— FuSim [22], an extension of QSIM.

— Mycroft [7], which includes a simulator based on QSIM, FuSim and
PA.

4 GENERATION AND CONTROL OF ERROR-
BOUNDED ENVELOPES

The properties of the simulators presented in the previous section have been
exibited in a binary manner. For example, all the interval based simulators
are complete but not sound, i.e. they provide overbounded envelopes. A step
forwards would be to produce some kind of measure of the degree of overbound-
ing, in other word to be able to evaluate the "error” of the obtained envelope
with respect to the exact one. However, the exact envelope is of course not
known. The exact envelope problem is actually highly complex as it requires
global optimisation tools for non linear and non convex functions.

An alternative way to approach this problem is to bound the error, i.e. to
determine the maximum distance. This can be achieved by computing both an
underbounded envelope and an overbounded envelope. The distance between
these envelopes indeed gives the maximum error. These envelopes are defined
as error-bounded envelopes.

A way of controling the error is by widening the underbounded envelope or
by tightening the overbounded one.

The generation of the underbounded and overbounded envelopes using a new
approach based on Modal Interval Analysis as well as the way to control the
error are presented in the following sections.

The approach used to generate the underbounded and overbounded en-
velopes is based on the reformulation of the simulation problem into an op-
timisation problem.

The behaviour of a n-th order dynamic system can be represented by the
following difference equation:

n m
Yir1 = Z aiYs—i + Z bjuz_j
=0 =0

in which it can be observed that the output of the system at any time point
depends on the values of the previous outputs and inputs. Hence, finding the



limits of the envelope at a given time point is equivalent to finding the maxi-
mum and the minimum of a function into a parameter space. This is a global
optimisation problem.

There are many different methods for global optimisation, but many of them
have no guarantee of finding the global optimum. In the case of the envelope
generation problem, a local optimum results in an incomplete (underbounded)
envelope.

Conversely, global optimisation methods based on the interval arithmetic
obtain overbounded results as stated by the monotonic inclusion property (cf.
section 3). This comes from the multi-incidence problem. In the following, two
types of multi-incidences are pointed out.

The first type of multi-incidence comes from the fact that, in a difference
equation like the one shown above, some parameters may appear several times.
For instance, the transfer function representation of a generic first order system
is:

F(s) = Y (s) _ k
U(s) 7s+1
in which £ is the static gain and 7 is the time constant. If this transfer function
is discretised by the Euler method, the difference equation representation of this

system is:
T kT
ye=\1—=)y—1+—ur
T T

in which T is the sampling period. As it can be seen, T appears more than
once in this equation. If the equation is rewritten, renaming the parameters as

follows: T LT
a= <1——>andb:—
T T

the situation is even worse because the multi-incidences do not appear ex-
plicitely. This is the reason for avoiding intermediate operations: each time
an intermediate operation is performed some information is lost. Going deeper,
k and 7 themselves include implicit multi-incidences with respect to the physical
parameters of the device!

The second type of multi-incidences is particular to the simulation mech-
anism as the equations are taken at different time points. For instance, the
difference equation at the time point ¢+ 1 of the generic first order system used

above is:
T kT
Yer1 = (1 —— |y + —uy
T T

As it can be seen, y;, 7 and k appear both in the difference equation for time
point ¢ and ¢t + 1. It should be noticed that these multi-incidences can be
treated as independent variables for systems whose parameters are known to
vary in time. On the other hand, they must be treated as so if the physical
system is assumed to be invariant. In this latter case, the multi-incidences can
be made explicit by merging the different equations starting from 0 into a unique
expression on which the optimisation is performed.

Modal Interval Analysis is an efficient tool to perform the optimisation task
taking the multi-incidences into account.




5 MODAL INTERVAL ANALYSIS

Modal Interval Analysis [8] [9] [10] extends real numbers to intervals, identify-
ing the intervals by the predicates that the real numbers fulfil, unlike classical
Interval Analysis which identifies the intervals with the set of real numbers they
contain.

In the following, some of the properties of modal intervals that are interesting
for envelope generation are stated.

The defining notation for modal intervals is X := (X', Q), where X’ € I(R),
which is the set of closed intervals of R, I(R) = {[a,b] | a,b € R, a<b},
and Q € {E,U}, E and U denoting the classical logic qualifiers. The canonical

notation is .
[CL a } o ([a1,a2]’,E) if al S ao
b ([a27a1]la U) if a; > as

where the quantifiers @ € {E,U} are the modality and [a1,as2]’, called the
extension, is an interval in the classical sense, i.e. a set of real numbers. Less
formally, if the modal intervals are canonically denoted by [1,2] or [2,1], when
the lower limit is written to the left, like in [1,2], it means that the interval is
just an ”interval bound” called ”existential interval” or ”proper interval”. That
is to say, the existential interval (the classical one) denotes one value within the
interval bounds. When the upper limit is written to the left, like in [2,1], it
indicates that the interval is a ”tolerance” and it is called ”universal interval”
or “improper interval”, which denotes all the values within the interval bounds.

The rational operations between modal intervals are extensions of classical
interval arithmetic with the addition of the dual operation defined by:

Dual([ay, as]) = [az,a1]

The dual formulation of the modal intervals allows to define two modal
interval extensions of a continuous function f: f*(X) and f** (X). The modal
interval extension represented by f* (X) may be interpreted as

U (5, X,) Q2. F (X)) E (1,X, ) (2 = f 0y, 22))

This can be read: ”For all elements belonging to the proper intervals there exists
at least one element in the improper intervals that fulfil the function”.

Example 3 [10,20] + [20, 15] = [30, 35] means
fH(X) C F(X) <= U (a,[10,20]") E (£,[30,35]') E (b,[15,20]") (a + b = f)
Example 4 [10,20] + [15,20] = [25, 40] means
U (a,[10,20]") U (b,[15,20]") E (f, [25,40]') (a + b= f)

On the other hand, the semantic interpretation of the f** (X) extension is
dual:

F(X)C f*(X)e=U (acX) Q (2, Dual (F (X))) E (xp,x’) (z = f (2, x7))

p

These two interpretations are very useful in order to compute the envelopes:



e Overbounded envelope. Its semantics is: "For every (universal quanti-
fier) model parameter, input and initial state, the output belongs to the
envelope (existential quantifier)”.

e Underbounded envelope. The semantics is dual: ”For every output be-
longing to the envelope there exist parameter, input and initial state values
that produce this output”

Therefore, Modal Interval Analysis can be used to compute both envelopes.
Unfortunately, the computation of f*(X) and f**(X) is not always possible.
The usual procedure is to find overbounded computations of f* (X) and under-
bounded computations of f** (X) which maintain the semantic interpretations.
To this respect, an aspect to be taken into consideration is the rounding of com-
putations. Computers work with digital numbers, not with real numbers. In
order to maintain the semantic interpretations, direct roundings (up or down)
have to be used.

If f is a rational function, there are some theorems in Modal Interval Analy-
sis that allow to obtain the exact range of f in some cases or overbounded
computations of f*(X) and underbounded computations of f**(X) in other
cases.

Definition 5 A modal interval extension fR(X) of f in X is optimal if
f1(X) = fR(X) = f(X)

The Coercion theorem provides the conditions and the way to obtain optimal
extensions.

Theorem 6 (Coercion theorem) Given fR(X), a rational interval function
defined in a parameter space Prop(X), tree-optimal and totally monotonic for
each multi-incident component of X. Let XD be an enlarged vector of X ob-
tained considering each multi-incident component as independent and trans-
forming it into its dual if it is antitonic (the monotonicity of this incidence
and the monotonicity of the component have opposite senses). In this case,

f(X) = fR(XD) = f* (X)

Example 7 Given f = 2% — zy and the parameter space v = [2,4] and y =

[1,2], the range of the function obtained by its natural extension is f*(X) C

[—4,14]. The ezact range can be computed applying the Coercion Theorem and
is f*(X) = £ (X) = [2,4]" ~ Dual (2,4]) [1,2] = [0,12]

If the function is not monotonic for each multi-incident component, the
Coercion Theorem can be partially applied in order to reduce the complexity
of the problem. For instance, given an n variable function, the problem of
finding the range of this function in a domain in which the function is monotonic
with respect to r variables, can be reduced to evaluate the range of an interval
function of n—1r variables. Therefore, the problem complexity has a lower order.

Example 8 Given f = xy — 22 — 2y and the parameter space x = [1,2] and
y = [3,4], the range of the function obtained by its natural extension is f* (X)
C [-9,1]. The function is totally monotonic with respect to y

of

Y910 <
9 x—2=[-1,01<0



but it is not totally monotonic with respect to x
of
oxr

The Coercion Theorem can be applied to y and hence a better approzimation of

the range of the function is obtained:

y—2x=[-1,2]20

f*(X) C ¢Dual (y) — 2% — 2y =[-8, —1]

A way to obtain even a better approzimation is by splitting the parameter space.
The advantage s that now only the variable x must be split. Moreover, the
range in each sub-space can be computed more exactly because the modality of
each incidence of the variable y is already known.

As a conclusion, the number of sub-spaces to be made in order to compute
an approximation of the range of the function is smaller when modal intervals
are used. This is illustrated in [25], in which modal intervals combined with
a branch-and-bound algorithm have been applied to the analysis and design of
robust controllers.

6 PRACTICAL APPLICATION TO ENVELOPE
GENERATION AND EXAMPLES

In the previous section, some tools of Modal Interval Analysis that are useful for
envelope generation have been described. One limitation of these tools is that it
is necessary to differentiate the function in order to apply de Coercion Theorem,
hence restricting the method to differentiable functions. However, the discrete
representation of the system used in our simulation problem is differentiable.

Asimulator based on these tools has been implemented. It uses iMatlab
version 5.1 for Unix [19]. Symbolic computations are performed with Maple V
r4 [17] through the Symbolic Math Toolbox. Moreover, it uses C++ programs
as MEX-files to perform modal interval computations with direct roundings and
to accelerate the branch-and-bound algorithm.

The inplemented simulation algorithm is the following;:

Modal Interval Branch-and-bound Algorithm
Given a function in a space
Modality of uni-incident variables is not changed
IF all variables are uni-incident THEN
Exact result
END
ENDIF
Calculate internal approximation
DO
External = internal
DO
Get subspace
FOREACH variable with unknown modality
IF 0¢first derivative THEN
fix modality

10



ENDIF
ENDFOREACH
IF all modalities are known THEN
Calculate parcial exact
Internal = internal V parcial exact
External = external V parcial exact
ELSE
Calculate parcial internal.
Internal = internal V parcial internal.
Calculate parcial external
External = external V parcial external
Divide subspace
ENDIF
WHILE remaining subspaces
IF error<e THEN
final=1
ENDIF
WHILE final=0
END
As an example, figure 4 shows the envelopes obtained for a generic first order
system with the following parameters:

e static gain: k£ = [0.95,1.05]

e time constant: T = [5, 20]

e initial state: yo =0

e sampling time: T'=1 s

e input: steps of different lengths and magnitudes

e maximum error of the envelopes ¢ < 0.2

In this figure, the solid line is the overbounded envelope and the dotted line
is the underbounded one.

Another example is the one shown in figure 5, in which the same system as
above is excited with a sinusoidal input. On the right, a high frequency white
noise has been added to the input, whereas on the left the input is the same
but without the noise. The interesting comment about this example is that, as
it can be seen on the figures, a significant amount of noise has been ”absorbed”
by the envelopes. Indeed, the envelopes produced with or without noise have a
much higher similarity than the noisy and non noisy inputs. In particular, the
envelopes corresponding to the noisy input are not wider than the other ones.
The width depends essentially on the imprecision of the model. This means
that semiqualitative simulation acts as a high frequency filter. This property
has not been carefully studied yet but should deserve attention in view of fault
detection applications.

11
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Figure 4: Example of simulation

7 FAULT DETECTION WITH ERROR-BOUNDED
ENVELOPES

When th error-bounded envelops are used for fault detection, it is guaranteed
that there is a fault when the measure is outside the overbounded envelope, but
the measure can be inside this envelope even when the system is faulty.

One reason is that the overbounded envelope, by definition, includes points
that cannot be reached by any of the systems represented by the interval model.
This zones are commonly referred as spurious points. The size of the spurious
points zone can be reduced adjusting the envelopes error bound to a lower
value. This implies a higher computation effort that is not necessary if the
measure is inside the underbounded envelope. Indeed, all the points within
the underbounded envelope are guaranteed to be reachable by a non faulty
system. Therefore, the additional computation effort is necessary only when
the measure is between the two envelopes. The error must be reduced until the
measure appears outside the overbounded envelope or inside the underbounded
envelope.

The second reason is that the measure can remain inside the envelope for
some time after a fault has occured due to the dynamics of the system. This
means that the fault is not detected inmediately. The time necessary to detect
the fault is related to the distance between the actual system parameter values
and their nominal values. If the distance is small, the time necessary to detect
the fault is larger. This time is not reduced if the error between the envelopes
is reduced.

12
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Figure 5: Simulation without (left) and with (right) noise

In conclusion, it is not necessary to work with a small error except in the case
when the measure is between the two envelopes. This means that the desired
error can be taken as a dynamic parameter of the simulation whose value is
updated on-line. In the case of the example given in the previous section, the
error, a constant, has been chosen in order to distinguish the two envelopes: it
is not very small, but sufficient in most cases.

8 CONCLUSIONS AND FUTURE WORK

In this paper it has been shown that the existing simulators for systems with
structured uncertainties provide envelopes which may or may not have proper-
ties like completeness, soundness, stability, etc. or not. Sometimes the proper-
ties are not even known.

When the properties are known, the error of the envelopes with respect to
the exact one is unknown. A method to obtain error-bounded envelopes is
proposed. It is based on the simultaneous computation of an underbounded
envelope and an overbounded one. Two ways to control this error are proposed
as well: tightening the overbounded envelope or widening the underbounded
one. Both can be achieved by means of Modal Interval Analysis. The error
of our envelopes can hence be adjusted to the desired value. The computation
effort of course increases when the error decreases.

This method has been implemented in Matlab and uses Maple and C rou-
tines. This facilitates its future integration into a supervision framework that
is being developed based on Matlab and Simulink. It is also planned to be

13



used to improve the prediction and fault detection algorithms of the Ca™En
simulator[24].

An inconvenient of this method is that the computation effort increases at
each step of the simulation. The exact envelope at a time point ¢ can only be
obtained by computing the range of the function that relates the current time
point to the initial one, i.e. all the previous states must be considered in order
to obtain the exact envelope. This means that the procedure is not incremental.
A solution to overcome this problem is the use of a shorter temporal window.
Due to the dynamics of the systems, it has been shown that the influence of the
previous states over the current one decreases with time[21]. Hence, it should
be possible to obtain similar results with a shorter temporal window lengh.
Saludes [21] recommends a window length which essentialy depends on the time
constant of the system.

A related problem is about the semantics of these results. For instance,
given an overbounded envelope and an underbounded one at a time point ¢,
both can be used as the initial state for the function at time point ¢ 4+ m. This
means that four approximations of the range of the function can be obtained:
over and underbounded approximations of the range of the function using over
and underbounded approximations of the initial state. Each one of these four
approximations has different semantics and the most suitable one, if it exists,
has to be decided. This problem is still under investigation. It seems that the
solution is simple for overbounded envelopes. This envelope can be obtained
computing an overbounded range of the function and using an overbounded
initial state. As the length of the temporal window increases, the envelope gets
closer to the exact one. The case of underbounded envelopes is more complex
and more work remains to be done.

As it has been shown, a very interesting feature of modal intervals is the
semantics. A future work is to study whether envelopes with different semantics
can be used not only to detect the faults but also to localise the faulty parameter.
For instance, if a system has two physical parameters a and b, envelopes with
the semantics ”for every a there exists b so that...” or ”for every b there exists
a so that...” can be obtained. If a system is faulty and its output belongs to
only one of these two envelopes, it should be possible to determine whether it
is a or b that is faulty.

Finally, in [4] it is claimed that it is not necessary to study the evolution
of all points belonging to an uncertainty region to know the evolution of the
region. The study of the evolution of points belonging to its surface is enough.
The possible application of this result to modal interval simulation gives another
direction for research.
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